
© 2020 Arm Limited. Shared under Creative Commons Attribution-NonCommercial-Sharealike (CC BY-NC-SA 3.0) license.

How to be an 
effective reviewer

Gilles Peskine

Original: Jan 2019; revised Sep 2020



© 2020 Arm Limited. Shared under Creative Commons Attribution-NonCommercial-Sharealike (CC BY-NC-SA 3.0) license.2

First, get into the right mindset!

In the future, someone else is going to use and maintain this code.

They'll hold me responsible for any bug.

That person is a psychopath.

They know my home address.

They have a time machine.

https://creativecommons.org/licenses/by-nc-sa/3.0/


© 2020 Arm Limited. Shared under Creative Commons Attribution-NonCommercial-Sharealike (CC BY-NC-SA 3.0) license.3

Channel your inner gatekeeper

Do we want this? Why?

• Bug fix? User request? Internally desired feature? Maintenance improvement?

• If I don't think we should do it, enquire internally

Look at the general shape

• Does it change what I think it should change?

Does it solve the problem?

• And is this the (or at least a) right way to solve the problem?

• Check against any applicable requirements or architecture document

– If there isn't one, should there be?

• Am I aware of other ongoing work that it would conflict with?

https://creativecommons.org/licenses/by-nc-sa/3.0/


© 2020 Arm Limited. Shared under Creative Commons Attribution-NonCommercial-Sharealike (CC BY-NC-SA 3.0) license.4

Channel your inner user

Is the PR useful?

• For its original objective

• For something slightly different

Do I understand the documentation?

• Do I understand which function(s) to call and how?

– Do I understand how to build/configure? Should this be in the default build?

• Is it sufficiently clear and detailed? Is it well-written and formatted?

– Especially: preconditions, error cases

• Does it need a changelog entry? a sample application? a knowledge base article?

https://creativecommons.org/licenses/by-nc-sa/3.0/


© 2020 Arm Limited. Shared under Creative Commons Attribution-NonCommercial-Sharealike (CC BY-NC-SA 3.0) license.5

Channel your inner conservative developper

Looking at the code only, without the context of the PR,

Do I understand why the code is correct
and does what it says on the tin?

– If not, it needs either a bug fix or a comment

• Robustness: what later changes might break it?

– Will the compiler catch it? The tests? Static analysis?

• Are the changes justified? (if it ain't broke, don't fix it)

• Does the code conform to the documentation?

• Portability (does it work on the DeathStation 9000? do we care?)

• Anything else I can think of, anything I've broken/seen break in the past, …

https://creativecommons.org/licenses/by-nc-sa/3.0/


© 2020 Arm Limited. Shared under Creative Commons Attribution-NonCommercial-Sharealike (CC BY-NC-SA 3.0) license.6

Channel your inner progressive developper

Does the resulting code look right?

• Does the PR go far enough?

– Is there further refactoring to do?

– Should more functions be made public? Fewer?

I could do so much better!

• Can it be made more obviously correct? easier to maintain?

• Performance: could it use less code, use less memory,
be faster, …?

Make improvements now? File issues for later?

and your inner competitor

https://creativecommons.org/licenses/by-nc-sa/3.0/


© 2020 Arm Limited. Shared under Creative Commons Attribution-NonCommercial-Sharealike (CC BY-NC-SA 3.0) license.7

Channel your inner attacker

How do I break it?

• Input validation

• Buffer overflows and other pointer arithmetic

• Memory management (use of uninitialized memory, use after free, memory leak…)

• Are the documented preconditions sufficient to ensure the code is correct?

– Should there be fewer documented preconditions and more checks in the code?

• Any other security concerns (e.g. side channels)

https://creativecommons.org/licenses/by-nc-sa/3.0/


© 2020 Arm Limited. Shared under Creative Commons Attribution-NonCommercial-Sharealike (CC BY-NC-SA 3.0) license.8

Channel your inner quality assurancer

Is the code well-tested?

• Bug fix: non-regression test if practical

• New feature: unit tests, integration/system tests if applicable

– Tests for special cases (not just what the code does but what it should do, which code coverage 
measurements won't tell you)

• If any test is removed or modified, is this justified?

– If a test needed to be changed, isn't this a compatibility break?

Does this conform to any applicable standard?

• Is the standard referenced in a comment?

Does this conform to our house rules? (Style, documentation habits, …)

https://creativecommons.org/licenses/by-nc-sa/3.0/


© 2020 Arm Limited. Shared under Creative Commons Attribution-NonCommercial-Sharealike (CC BY-NC-SA 3.0) license.9

Channel your inner maintainer

Backward compatibility

• What behaviors does this change? Does it break the API? the ABI? To what extent?

• User-facing documentation: is it clear what is guaranteed and what can change in future versions?

Suitability

• Usually this works for the author's use case. What other uses cases are there? Corner cases?

• If there's an API extension, is this what we'll still want in five years?

Maintainability

• Looking at the changes and the git commit messages only, do I understand what each step does?

– Ok to need the context of the PR to understand the overall goal, but not to understand individual commits

https://creativecommons.org/licenses/by-nc-sa/3.0/


© 2020 Arm Limited. Shared under Creative Commons Attribution-NonCommercial-Sharealike (CC BY-NC-SA 3.0) license.10

Finally, channel your inner everything

Mindset: what's missing?

• Handling of special cases

• Documentation

• Tests

• Updates to build/test scripts

• Behavior in non-default configurations

• Things that I've (seen) forgotten in the past

https://creativecommons.org/licenses/by-nc-sa/3.0/


1111 © 2020 Arm Limited

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद



© 2020 Arm Limited. Shared under Creative Commons Attribution-NonCommercial-Sharealike (CC BY-NC-SA 3.0) license.12

Image credits

[2] Terminator Robot Futuristic Machine by jean52Photosstock. Pixabay
[3] Workaround (extract) by Randall Monroe. CC BY-NC 2.5
[4] Untitled, unknown artist. CC0 (public domain).
[5] Stubborn Donkey by Asaf Braverman. CC BY-NC-SA 2.0
[6] Ivory okimono of an elephant trampling a tiger, unknown artist, Japan. Photo by 

Galleries of Wolverhampton. CC BY-NC-SA 2.0
[6] Bear climbing a tree by Nicolas Vollmer (extract). CC BY 2.0
[6] Wolf Howling by skeeze. Pixabay
[7] Anonymous hacker behind pc by elconomeno. CC0 (public domain).
[8] Transpalatial arch expansion (extract) by Giorgio Fiorelli. CC BY 3.0
[10] The Oklahoma by Vegan Feast Catering. CC BY 2.0

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://pixabay.com/illustrations/terminator-robot-futuristic-machine-5357535/
https://pixabay.com/service/license/
https://xkcd.com/763/
http://creativecommons.org/licenses/by-nc/2.5/
https://pxhere.com/en/photo/704019
https://creativecommons.org/publicdomain/zero/1.0/
https://www.flickr.com/photos/theheartindifferentkeys/4665342309
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.flickr.com/photos/wolverhampton_arts_and_heritage/3842266511
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://commons.wikimedia.org/wiki/File:Bear_climbing_a_tree_in_Libearty_Bear_Sanctuary_(32147519364).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
https://pixabay.com/en/wolf-howling-howl-wild-canine-590756/
https://pixabay.com/service/license/
https://openclipart.org/detail/288357/anonymous-hacker-behind-pc
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:TPA_Expansion.jpg
https://creativecommons.org/licenses/by/3.0/
https://www.flickr.com/photos/veganfeast/4988554625
https://creativecommons.org/licenses/by/2.0/

