General dual-core design overview

- A lightweight mailbox dedicated for TF-M for inter-core communication
- Dual-core specific PSA Client API implementation on Non-Secure Side
- Share the same TF-M SPM interface/behavior as that in single Armv8-M TF-M
- Design document online
Current progress and further features

• Current progress
 • Technical collaboration with Cypress on PSoC 6 platform
 • Implement dual-core TF-M Isolation Level 2 feature on Cypress PSoC 6 platform on feature branch.
 • Merging general features from feature branch back to master branch

• Further general features
 • Multiple outstanding PSA Client calls from NS
 • Secure interrupt on dual-core topology
 • Dual-core specific test cases (Not currently planned)
Open Discussion

• Multiple outstanding PSA Client call from NS
 • Support multiple NS threads to send PSA Client request simultaneously
 • Changes to TF-M (Mailbox/SPM): recognize the multiple PSA Client call requests/replies.
 • Platform/NS OS specific thread waiting/waking mechanism on NS side.

• Pieces of potential enhancement/feature
 • Secure core enters low-power during idle
 • Identification of NS tasks inside TF-M

• Contributing to dual-core features
Thank You
Danke
Merci
谢谢
ありがとう
Gracias
Kiitos
감사합니다
धन्यवाद
شكرًا
tודה

© 2019 Arm Limited
Implementation details

- Key workflow of handling secure service
Implementation details (cont.)

- Handle inbound mailbox message in TF-M PendSV handler
 - Decrease the cost brought by Inter-Processor Communication
 - Avoid blocking other urgent secure interrupts
 - Simplify platform specific implementation

 - Put mailbox handling in a secure thread as some common IPC/RTOS projects do
 - Long latency
 - High Complexity

 - Put mailbox handling in platform specific IPC dedicated interrupt handler
 - Each platform has to implement the handling
 - Difficult to set IPC interrupt priority
 - Mailbox response vs. Other interrupt source
 - Diverse requirements in different use cases/platforms

 - Put mailbox handling in “Half bottom” of PendSV handler
 - Simplify platform IPC handler: Just trigger PendSV
 - Reasonable latency
 - Put PendSV into low priority to avoid blocking other urgent events
Implementation details (cont.)

- Booting a dual-core platform
 - Design document
 - Platform specific implementation of general APIs
 - Assumption/requirements on system architecture

![Diagram showing booting process for a dual-core platform](image-url)
Multiple ongoing PSA Client request from NS

- Enhance concurrency on non-secure core
 - Support of multiple ongoing PSA client call requests

Mailbox appends mailbox message handle to the corresponding PSA message. The handle identifies the mailbox message when PSA client call is completed.
Porting TF-M on a dual-core platform

- Platform specific Inter-Processor Communication (IPC) functionalities
 - IPC interrupt
 - Notification functionalities to implement mailbox HAL APIs.

- Platform specific implementation of mailbox HAL APIs
 - Mailbox initialization
 - Synchronization and critical section protection between cores

- Booting sequence
 - Based on platform specific inter-processor communication

- Integration of Non-secure and Secure binaries
 - No veneer binary
 - Additional export files for mailbox
 - Different build configs on dual cores if porting NS demo and test of TF-M